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THE CONVERGENCE RATE OF MULTI-LEVEL ALGORITHMS APPLIED TO
THE CONVECTION-DIFFUSION EQUATION*

P. M. DE ZEEUWT AND E. J. VAN ASSELT+

Abstract. We consider the solution of the convection-diffusion equation in two dimensions by various
multi-level algorithms (MLAs). We study the convergence rate of the MLAs and the stability of the coarse-grid
operators, depending on the choice of artificial viscosity at the different levels. Four strategies are formulated
and examined. A method to determine the convergence rate is described and applied to the MLAs, both
in a problem with constant and in one with variable coefficients. As relaxation procedures the 7-point ILU
and symmetric point Gauss-Seidel (SGS) methods are used.
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1. Introduction. We consider the convection-diffusion equation
] d
(1.1) L= —ebutby(x,y) =+ ba(x,y) ==1(x y)
ax dy

for (x, y) e Q= R?, £ > 0, with Dirichlet and Neumann boundary conditions on different
parts of 8Q).

When the diffusion coefficient ¢ is small in comparison with the mesh-width A, the
stability of discretizations of (1.1) by central differences (CD) or the finite element
method (FEM) can be improved by augmenting ¢ with an artificial viscosity of O(h).
This rather crude way of stabilizing the discrete problem may form part of more subtle
iterative methods for solving (1.1) with small ¢, for instance the mixed defect correction
process (cf. Hemker [4]) or the double discretization process (cf. Brandt [3]).

In § 2 we introduce four strategies for choosing the artificial viscosity on the coarse
grids in the multi-level algorithm (MLA) (cf. Van Asselt [1]). In § 3 we describe the
method which is used to determine the convergence behaviour of the multi-level
algorithm for these strategies. In § 4 we compare the convergence rates as measured
by the method described in § 3. Finally, some conclusions are formulated in § 5.

2. Artificial viscosity, strategies, stability and asymptotic convergence rate. In this
section we derive all theoretical results for the constant coefficient case by local mode
analysis neglecting the boundaries. We introduce various strategies for choosing the
coarse-grid operators in the MLA. We give a motivation for the choice of these
strategies, and analyze their stability (cf. Theorem 2.14, Corollary 2.18, Theorem 2.19,
Corollary 2.24). Further we formulate some important properties of the different
strategies (cf. Conjectures 2.25-2.27). In the case of FEM discretization we also consider
the Galerkin coarse-grid approximation. In this paper we only consider the FEM based
on a uniform triangulation of () with right-angled triangles.

The trial and test space is spanned by the set of piecewise-linear “hat-functions”
¢; which take the value 1 at x; and 0 at all other vertices of triangles.

We consider the MLA (cf. Hemker [5]) with [+ 1 levels: 0,- - -, and uniform
square meshes on each level with meshwidths hy and by = h,_,/2 for k=1,--- 1

Let { L%} k=0, be a sequence of discretizations of L.. For the constant-coefficient
equation we denote by I:s(w), o €R? the symbol (or characteristic form) of the
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continuous operator L. By LX), € T, =[—=/hy, 7/ h %, we mean the symbol of
the discrete operator L*'.

When a symbol is small the corresponding operator is unstable in the sense that
small changes in the right-hand side cause great changes in the solution. Depending
on the boundary conditions the continuous problem can be well posed. Therefore we
allow the symbol of the discrete operator to be small only for those frequencies for
which the symbol of the continuous operator is small. This idea is formalized in the
following definitions.

~ DeriniTION 2.1. The g-asymptotic stability degree of L. with respect to the mode
e’* is the quantity lim, jo|L.(w)|.

DEFINITION 2.2. The 8-domain of L.is the set of all w € R for which lirnswlf:E ()|>
5>0.

DEeFINITION 2.3. The e-asymptotic stability degree of L' with respect to the mode
¢!~ is the quantity lim, o/ LY (w)|.

DEFINITION 2.4. The 8-domain of L¥' is the set of all we T, for which
lim, o/ L*(w)|> 6> 0.

DEFINITION 2.5. A strategy for coarse-grid operators is aset {L%, L., - -+, LL - -}
with LL={L%" --. L}

DEFINITION 2.6. Let S be a strategy for coarse-grid operators, then S is &-
asymptotically stable with respect to L, if for every §,> 0 there exists a §,> 0 such that
for all 0= k =1, we have the §,-domain of L*' > 8,-domain of L, N T,.

Remark 2.7. In order to avoid residual transfers in the MLA that are useless due
to oscillating solutions, we require that a strategy is e-asymptotically stable with respect
to L.. Moreover we need a relaxation method for which the smoothing factors on all
grids are less than 1. We then expect rapid convergence of the MLA.

Another approach would be to admit e-asymptotically unstable strategies and to
require that the relaxation method is such that bad components in the residuals are
sufficiently smoothed. This poses very strong demands upon the relaxation method. If
a strategy is not e-asymptotically stable with respect to L., and the relaxation method
can not sufficiently damp the oscillations we may expect divergence if the number of
levels increases.

By L..p.n We denote a discretization of (1.1) with artificial viscosity Bi and
meshwidth h,, and for fixed h, and y> 0 (independent of ¢, k and ) we will consider
the following four strategies for coarse-grid operators:

Strategy 1 (S,):

(2.8) L’:»’: L.igln and ﬁ;( =vyh, k=0,---,1L
Strategy 2 (S,):
(29) L?I=L5+Bl‘,hk> B§=yhla ﬂiz')’hkﬂ, k=0,‘ . 'al—l'

Strategy 3 (Ss):

(2.10) LY =L,.pis, andBi=vyh, k=0,---,L

Strategy 4 (S,):

(2.11)  LM=L.. g, withBi=yh,  LE'=Ru i Li™Peg, k=I-1---,0.

(Ryx+1 and Py, are the restriction and the prolongation which are consistent with
the FEM used.)
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Remark 2.12. The choice of L* according to S, is called Galerkin coarse-grid
approximation. If we consider a constant-coefficient problem and neglect the bound-
aries, then a coarse-grid operator constructed with the FEM according to S, is identical
with the Galerkin coarse-grid approximation as in S;. The molecule is given by

0 -1 -1 1 1 2
E+ﬁ;€ bl b2
Le+ﬁ"“hk=“—hi—_ -1 4 -1 +6—h— -2 0 2 +—6—E; -1 0 1
, -1 0 ) -1 1 -2 -1

Remark 2.13. It follows from (2.8)-(2.10) that
for S,: lim B/ h, =lim y/2' =0,
I->co l-»00

for S,: B/ h = y/2 uniformly for all k, I,
for S;: B/ hi = y uniformly for all k, L

In Theorem 2.14, Corollary 2.18 and Corollary 2.24 we will prove that S, and S, are
not e-asymptotically stable and S, and S; are. Further we will point out that the
convergence rate of the MLA with S, is better than with S;.

THEOREM 2.14. Consider the CD- or FEM-discretizations of (1.1) with artificial
viscosity B} and constant coefficients; then S, is not g-asymptotically stable with respect
to L..

Proof. We give the proof only for the CD-discretizations; the proof for the
FEM-discretizations is similar. The CD-discretization of (1.1) with artificial viscosity
B and constant coefficients b, and b,, b>+ b2 =1, reads

e+B. b e+Bi, b
Ls+ﬁ£.hk”5<"_ﬁ‘k_"2_>“t§~l+<‘ Bk'*_z)"?f}ﬂ

hi 2k hi  2h
8+ﬂ;c bl) h ( 8‘*‘3;( b1> h
2.15 +| —————— Juik, | ———F+—Juik,;
( ) ( hi 2hk U; 1,j hi 2hk u_‘_“J
5+Bl h
+4( ¥ *)u2§= 5
k

Its characteristic form reads

_2(e+Bi)(cos @by + cos why —2) +_i(bl sin w, by + b, sin w,hy)

(2-16) Le+BL,hk(w)= hi hy

The characteristic form of L, reads
(2.17) L.(w)=e(0}+ 0 +i(bo+bw,),

hence the 8,-domain of L, is the set of all @ € R? for which |b,w,+ b,w,|> §,> 0. We
have to show that a 8,> 0 exists such that for all §,>0 there exist k, [€eZ, 0=k =],
such that for an & € R* with @& € (8,-domain of L,)N T, we have & £ 8 -domain of
L..p.n.- For that purpose we proceed as follows. Take §,=0.17r/hy and let §,>0 be
arbitrary. Take k=0 and I>1log,(4y/hy8,); then for either & = (m/hy,0)e T, or @ =
(0, 7/ ho) € Ty both [b,G,+bydis|> 8y and lim, | L, , i 4 (@) =4y/(he2') <8, hold.
Hence S, is not e-asymptotically stable with respect to L..

This leads us to

CoroLLARY 2.18. Consider L, with constant coefficients b, and b,; then S, is not
e-asymptotically stable with respect to L..
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Proof. The proof follows immediately from (2.12) and (2.14).

THEOREM 2.19. Consider the CD-discretizations of (1.1) with artificial viscosity B
and constant coefficients. Let S be a strategy with Bi/h,=C >0 uniformly for all
k,I(k=1)eZ; then S is e-asymptotically stable.

Proof. Again we use (2.15)-(2.17). We have to prove:

V8,>036,>0Vk LO=k=I
= 8p-domain of L, N Ty, < 8,-domain of L,.z!4,.

Take 8, =min (3, 2C/5)8,. In the case 8,>2"?x/ h, the inclusion is trivially satisfied
because 8,-domain of L, N\ T, =&. If 0< §,=2"?m/h, then w € 8,-domain of L, N T}
implies

60hk < lblwlhk + bzwzhk‘.
The normalization b+ b3 =1 and the inequality |sin x — x| =|x’|/4 for all xeR yield

3 3
(2.20) 80hk < |b[ sin wlhk + bz sin wzhkl +l'a)l4'—"11<'l"+|£24h—k|—.
We distinguish the two complementary cases:

(i) le hkP = 60’1)( and IwzhkP = aohk N

(il) lehkl3 > Sohk or lehkP > 50hk-
Because of (2.16) and (2.20) case (i) implies:

[by sin w b +b; sin wahyl B, o
By 2

(2.21) im|L, g1 p (@) =
£l0

To complete the proof we now consider case (ii). It follows from (2.16) and By/h.z=C
that

2C(1—cos w h+1—cos wyhy)
hy ’

(2.22) im| L, g1 (@)=
|0

and from (ii) and 0 < 8,h, =2'%7 it follows that the right-hand side of (2.22) is greater
than or equal to
2C60(1 —COS ((SOhk)l/3))
aohk ?

hence

. 208
(2.23) lim| L, 51 p, ()] > = > 5,>0.
10

Both (2.21) and (2.23) hold uniformly for all k, I so S is e-asymptotically stable with
respect to L..

Note that the condition of Theorem 2.19 is satisfied by taking on coarser grids
the artificial viscosity proportional to the current meshwidth.

COROLLARY 2.24. Consider the CD-discretizations of (1.1) with artificial viscosity
B and constant coefficients; then S, and Ss are e-asymptotically stable with respect to L..

Proof. The proof follows immediately from Remark 2.13 and Theorem 2.19.

It is obvious that the e-asymptotic stability degree of the individual grid-operators
belonging to S, is larger than in the case of S;. Moreover for decreasing y the smoothing
factors for S, become worse (cf. Table 2). We formulate this in the following
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Conjecture 2.25. For a fixed number of levels the set of y-values for which the
MLA with S, converges, is larger than that for which the MLA with S, converges.

In case of a two-level algorithm (TLA), [ =1, and a constant-coefficient problem,
a two-level analysis shows that the asymptotic rate of convergence for S, or S,, for
which the artificial viscosity is equal on both levels is better than for S;, where the
artificial viscosity corresponds to the meshwidth. (cf. Van Asselt [1]). Therefore in S,
we take an equal artificial viscosity on all levels. For this strategy, however, stability
problems may occur on coarser grids (cf. Theorem 2.14). S; is e-asymptotically stable
(cf. Corollary 2.24), but the two-level analysis indicates that the convergence rate is
slower. S, is an intermediate strategy where on levels [ and /-1 the artificial viscosity
is the same, and it is also e-asymptotically stable (cf. Corollary 2.24). These arguments
lead to the following

Conjecture 2.26. S, combines the rapid convergence rate of S, with the stability
of S;.

At level ! the discrete operators L,.g!, using S;, S,, S; are equal.

At level I—1 the discrete operators L,,g!  ,_, using S, S, are equal (S; is not),
and the relative order of consistency of the S; and S, operators on level [ and [—1 is
the same and higher than that of S;. Furthermore, consider the part of T, where the
smoothing effect of a relaxation method applied to S, and S; is the same as in the
case of S| in terms of local mode analysis. For S, this part is larger than for S; (cf.
Fig. 1). For S, the same arguments hold as for S, (cf. Remark 2.12). This leads us to
formulate the following

Conjecture 2.27. For a finite number of levels and v sufficiently large the difference
between the asymptotic rate of convergence of the MLAs using S, or S, and S, is
smaller than that between S; and S,. The properties stated in Theorem 2.14, Corollary
2.18, Corollary 2.24 and Conjectures 2.25-2.27 will be confirmed by numerical experi-
ments in § 4.
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FIG 1. Parts of T, where for S, and S, the smoothing effect is the same as for S, and S,.
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3. Numerical approximation of the convergence rate. In this section we give a

description of the method used to determine the a i
symptotic rate of convergence of
the MLA. Let :

3.1

A,v, = f, be a discretization of (1.1).

The MLA used to solve (3.1) can be described as a defect correction process (cf.
Hemker [5]):

(3.2) v? given start approximation,

vy =Muht By fr, =01,
with amplification matrix M, = I,— B;'A,. I, is the identity matrix, and B; 'is an
approximate inverse of A,, determined by coarse-grid and smoothing operators, pro-
longation and restriction. We suppose A, and B, to be nonsingular. For the error
el =v,—vh, i=0,1,- - the following relation holds:

ey = Me,.
The convergence behavior of the MLA is determined by the spectral radius of M.

This motivates the following:

DEFINITION 3.3. The asymptotic rate of convergence of the MLA (3.2) is

—logio p(M,) where p(M,) = max;|A,| is the spectral radius of M,,; A, are the eigenvalues
of Mh'

THEOREM 3.4.

k 1/k
sup lim (“M “"") — (M),

<m0 koo \ 1]

with ||| an arbitrary norm.
Proof. See Stoer and Bulirsch [7, (8.2.4)], Varga [8, Thm. (3.2)]. Because of
Theorem 3.4 we can compute an approximation Pk (Mp, %) of p(M,) defined by

IIML"+keillz>"k
. m i (M, b E(“‘_“‘n}'—'—’ >
(3.5) P ,k( i €h) th e(,’,||2

where || - | is the Euclidean norm. Note that

(3.6) sup lim Pk M, eh)=p(My).

e2#0 mk-co

In numerical computations vh, j=m,---,mtkare obtained by the iterative method

under consideration. When for increasing m and k, e}l reaches values near the
H Joo.

square root of the machine accuracy, we replace e}, by €

(3.7) e} = neh(n>1),

and replace v}, by v},
(3.8) Vhn=Vn T €hn-
Thus

leirills _lledl

JLUBIELUSS. L
LB R )

lehall. llenlz’
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and as

| N oo A A\ e

(3.9) Pm,k(Mh, en) =< H _7_> ,
j=m el

in this way values of p,, (M, e;) can be computed for large m and k. By this method
ultimately the eigenfunctions of M, corresponding to nondominant eigenvalues will
decrease exponentially relative to the dominant eigenfunctions. Note that for small m
and k, p,., depends strongly on f;, while p does not. There are more refined methods
to determine the spectral radius. (cf. Wilkinson [11]). However for our purpose the
method described is sufficiently accurate.

4. Numerical results. In this section we give the results of numerical experiments
to compare the strategies S,, S,, S; and S, and to verify the properties stated in Theorem
2.14 Corollaries 2.18 and 2.24 and Conjectures 2.25-2.27. We take three test problems.
Test problem 1 with constant coefficients closely resembles the problem analysed by
two-level analysis in Van Asselt [1]. Test problem 2 has variable coefficients. Although
a strict application of Fourier analysis arguments does not hold for these variable
coefficient problems, the experiments for the latter test problem show that globally the
same properties hold as for the constant-coefficient case. For the second problem we
also show to what extent the strategies S,, - - -, S, are better than relaxation alone (i.e.,
without coarse-grid correction). Test problem 3 differs from Test problem 1 by discretiz-
ation (FEM), relaxation (ILU) and number of levels.

Test problem 1. We consider the following convection-diffusion equation (see

Fig- 2)
e+ ymAutu=0 onQ=[0, 1]x[~1, 1],
(4.1) i

e=10"%  h=4.

The boundary conditions are:

1, 0=x<3i-107°,
(4.2) ulso=1{-10°(x-3), 3-107°=x=3+10"5,
-1, i+107%<x=1,
au| _ou| _au| _
on |ls,a 9N ls,a 91 |50 ’
with §,Q, -, 8,0 in Fig. 2.
8.0
(0,-1) > (0, 1)
l »i
&
5,Q - 850
convection- Lo
direction (ih, jh)
— 1,1
(1,-1) ol (1,1

F1G. 2. The domain Q.

Equation (4.1) is discretized by CD on levels k=0, --,/=3 with meshsize
h,=1/2%*"'. The boundary conditions are not substituted. The Dirichlet boundary
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conditions are implemented with a large number on the main diagonal to avoid

unwanted coarse-grid corrections at the boundary. The Neumann boundary conditions
are discretized as follows:

8,0: u(l,y)~u(l—h,, y)=0, ~-1<y=1,
8300 u(x, 1) —u(x, 1 —h) =0, o0<x<l,
8,0: u(0,y) —u(h, y)=0, ~l<y=1l, k=0,---,1=3.

For various values of vy the discretized equation is solved with the W-cycle MLA (i.e.,
the application of 2 multi-level-iteration steps to approximate the solution of the
coarse-grid equation).

We perform one pre- and one post-relaxation step consisting of symmetric point
Gauss-Seidel relaxation (SGS) in the y-direction. We use 7-point prolongation and
7-point restriction (cf. Hemker [6], Wesseling [9]). On the coarsest level we solve
exactly. A random initial approximation of the solution is used. The values for m and
k in (3.9) are 30 and 10 respectively.

Test problem 2. We consider the following convection-diffusion equation (see
Fig. 3)

d d
~(e+vyh)Au+b, —u+b,—u=0 Q=[0,1]1x[-1,1
(8 'Y) u laxu Zayu on [3] [ ,]a

(4.3)
8=10“6a h=1—163 blzy(l—xz), b2=—x(1—y2)'

The boundary conditions are

u|sq=1+tanh (10+20x), -1=x=0,
(4.4)
aul  _ou| _ou|l _au| _
on 50 on 5,0 on 5.0 on 8550
8,82
(-1,1) (1, 1)
convection direction
20 () |50
(-1,0) > 1,0
5.2 x, i 8,00 0
F1G. 3. The domain Q).
Equations (4.3) and (4.4) are discretized by the FEM on levels k=0, - - -, [ =4 with

mesh-size h, = (1/2)*. The boundary conditions are not substituted and the Dirichlet
boundary conditions are implemented with a large number on the main diagonal. For
different values of vy, and S,-S, the discretized equation is solved with the W-cycle
MLA. We perform one pre- and one post-relaxation step by means of 7-point ILU
relaxation, (cf. Wesseling and Sonneveld [10]). The ILU-decomposition is ordered
lexicographically (cf. Fig. 3). On the coarsest level we solve exactly. Again we use
7-point prolongation and 7-point restriction (that are consistent with the FEM discretiz-
ation), and a random initial approximation. In (3.9) m and k are again 30 and 10.
Test problem 3. For [=4, 5, 6, we consider (4.1) with different h, and (4.2) discret-
ized by the FEM on levels k=0, - - - , I, with mesh size = (3)**", ¥ =3. The boundary
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conditions are not substituted and the Dirichlet boundary conditions are implemented
with a large number on the main diagonal.

The discretized equation is solved with the W-cycle MLA. We perform one pre-
and post-relaxation step by means of 7-point-ILU relaxation (on the coarsest level we
do not solve directly, but perform 2 relaxation sweeps). The ILU-decomposition is
ordered lexicographically (cf. Fig. 3). We use 7-point prolongation and 7-point restric-
tion. A random initial approximation of the solution is used. The values for m and k
in (3.9) are 20 and 10 respectively.

Figures 4 and 5 show the properties in Conjectures (2.25)-(2.27) for Test problems
1 and 2, respectively. Figure 5 also shows that all strategies S,-S, are better than
relaxations without coarse-grid corrections. In Table 1 for S, S, and S; the smoothing
factors of SGS are given at different levels and for different y. We notice that for
log,y >0 the big difference in the asymptotic rate of convergence of S, and S; (cf.
Fig. 4) is mainly caused by the order of consistency and to a small extent by the
relaxation method, because the smoothing factors are almost the same.

In order to demonstrate Theorem 2.14, Corollaries 2.18 and 2.24 in connection
with Remark 2.7 we take Test problem 3. Table 2 shows the convergence rates as
measured (cf. Definition 3.3). Note that S, and S, show similar stability and convergence
behavior (cf. Remark 2.12).

Remark 4.5. With respect to Remark 2.7 we notice that in many cases a decreasing
stability coincides with a worsening smoothing factor (cf. Table 1).

o
w7

4

osSmp‘LoL Lc cenvergence rate

1 LEGEND
v - 51
o= S2
o= 93
[}
© T T T T T T T T
-4.0-3.% -3.0 -2.% -2.0 -1.% -1.0 -0.% 0.0 0.% 1.0
2
Legs

FIG. 4. Asymptotic convergence rates for Test problem 1. Only the part of the figure with positive asymptotic
convergence rate is drawn. (1=3, hy=%).
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o
(oY)

osymptotic convergence rate
1.0

LEGEND
v= Sl
o= 52
¢= 53
x= 54
+= ILU

o
o

T U T Rl T 1 T
-4.0-3.9 -3.0 -2.% -2.0 -1.% -1.0 -0.% 0.6 0.% 1.0

2
Logy

FI1G. 5. Asymptotic convergence rates for Test problem 2. The graph depicted by *‘+” represents two ILU
relaxation sweeps in one iteration step without coarse-grid correction. Only the part of the figure with positive
asymptotic convergence rate is drawn. (=4, h; =1).

5. Conclusions. In order to solve the convection-diffusjon equation in two
dimensions by a multi-level algorithm (MLA), we consider 4 strategies for coarse-grid
operators:

S,: on each coarse grid the same artificial viscosity as on the finest grid;

S;: on each coarse grid the artificial viscosity corresponding to the mesh width;

S,: anintermediate choice, with the same artificial viscosity on the two finest grids;

S,: Galerkin approximation for the coarse-grid operators.

For S, and S, the artificial viscosity may become too small on coarse grids, and
hence stability problems and bad smoothing-factors may occur. $; and S, are not
e-asymptotically stable, S, and S; are. (cf. Definition 2.6, Theorem 2.14, Corollaries
2.18, 2.24 and Table 1).

If the finest-grid artificial viscosity is sufficiently large, the asymptotic rate of
convergence of the MLA according to S, is far better than that of S; (cf. Conjecture
2.26 and Figs. 4, 5).
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TABLE 1
Smoothing-factors for one SGS sweep, Test problem 1, different vy, levels and strategies
(local mode analysis, c¢f. Brandt [2]).

N S .
k S, S, Ss k S, S, Ss
3 0.36 0.36 0.36 3 0.24 0.24 0.24
2 4.84 4.84 0.36 2 0.80 0.80 0.24
1 186 434 0.36 1 15625 0.80 0.24
log, y=-15 log, y=-1.0
S N
k S, S, S, k S, S, S,
3 0.23 0.23 0.23 3 0.24 0.24 0.24
2 0.36 0.36 0.23 2 0.24 0.24 0.24
1 4.84 0.36 0.23 1 0.80 0.24 0.24
log, y=—0.5 log, y=0.0
S S
k S, S, S, k M S, S,
3 0.24 0.24 0.24 3 0.25 0.25 0.25
2 0.23 0.23 0.24 2 0.24 0.24 0.25
1 0.36 0.23 0.24 1 0.24 0.24 0.25
log, y=0.5 log, y=1.0
TABLE 2

Convergence rates for Test problem 3, S,-S,, and increasing L.

strategy
level ! hy S, S, Ss Sa
4 1/32 2.01 1.78 1.61 2.01
5 1/64 «0 1.70 1.33 «0
6 1/128 <0 1.17 0.87 «0
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